Signal Propagation and Analysis in Wireless Underground Sensor Networks

Author:

Zungeru Adamu Murtala1,Chuma Joseph1,Mangwala Mmoloki1,Sigweni Boyce1,Matsebe Oduetse1

Affiliation:

1. Botswana International University of Science and Technology

Abstract

The most challenging issue in the design of wireless sensor networks for the application of localization in the underground environment, mostly for miner’s location, is the sensor nodes’ energy consumption, efficiency and communication. Underground Wireless Sensor Networks are active and promising area of application of Wireless Sensor Networks (WSNs), whereby sensor nodes perform sensing duties in the underground environment. Most of the communication techniques used in the underground environment experience a high path loss and hence, hinders the range needed for transmission. However, the available option to increase information transmission is to increase the transmission power which needs large size of apparatus which is also limited in the underground. To solve the mentioned problems, this paper proposed a Magnetic Induction based Pulse Power. Analytical results of the Magnetic Induction based Pulse Power with an ordinary magnetic induction communication technique show an improvement in Signal-to-Noise Ratio (SNR) and path loss with variation in distance between nodes and frequency of operation. This paper further formulates a nonlinear program to determine the optimal data (events) extraction in a grid based WUSNs.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3