System Identification and IMC-Based PID Control of a Reactive Distillation Process: A Case Study of n-Butyl Acetate Production

Author:

Giwa Abdulwahab1ORCID,Owolabi John Olusoji1,Giwa Saidat Olanipekun2

Affiliation:

1. Afe Babalola University

2. Abubakar Tafawa Balewa University

Abstract

The identification of a reactive distillation system for the production of n-butyl acetate from the esterification reaction between acetic acid and n-butanol has been carried out in this research work. In order to achieve the aim of the research work, a prototype plant of the process was developed using ChemCAD from which dynamics data were generated upon applications of step changes to the reboiler duty and the reflux ratio, which were the input variables of the system. Thereafter, the transfer function of the process, later represented in Simulink environment, was formulated using the dynamics data and with the aid of MATLAB. The simulation of the transfer function model of the system was also carried out for open loop by applying step changes unto the input variables using the developed Simulink model of the system. Thereafter, the closed-loop control system developed also in Simulink environment was simulated by applying step changes to the set-point variable, which was the bottom mole fraction of n-butyl acetate. The results obtained from the simulation of the prototype plant of the reactive distillation process showed ChemCAD to be a powerful tool for steady state and dynamics prototype plant development. Furthermore, good representation and stability were also observed to exist in the system from the formulation and the simulation of the transfer function model of the process, which were carried out with the aid of MATLAB/Simulink. Moreover, the selection of appropriate closed-loop time constant contained in the tuning parameter formulas of IMC-based control system showed that the value suggested by Rivera et al. [1] was very good for this system, compared to those of Chien and Fruehauf [2] and Skogestad [3], because it could give closed-loop dynamic response with comparatively very low values of integral squared error (ISE), integral absolute error (IAE) and integral time absolute error (ITAE) for both proportional-integral (PI) and proportional-integral-derivative (PID) control systems. In addition, the comparison made between the IMC-based tuning approach and other ones (Cohen-Coon, Tyreus-Luyben and Ziegler-Nichols) considered in this work made it known that IMC-based tuning technique was the best among all those considered because its ISE, IAE and ITAE were found to be the lowest for both PI-and PID-controlled cases simulated.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3