Affiliation:
1. Addis Ababa University
Abstract
The purpose of the study was to predict the mechanical and toughness properties of Ni-modified alloy steels by adding 1.55%, 1.75%, and 1.95% of Ni-content to the existing Cr-Mo alloy steel of transmission gear material. Typically transmission gears have been working under severe working situations of loads and rotations. Due to these situations, the properties and qualities of gear materials are highly affected consequently, fatigue failure is instigated. So, improving the mechanical and toughness properties of the existing gear material is very vital and compulsory since these properties have a direct impact on gear fatigue failure. Investigations have been done on determining the mechanical and toughness properties of the Ni-modified Cr-Mo alloy steels, through ANN modeling prediction by associating the complex relation of input (chemical composition, tempering temperature) and output parameters (mechanical and toughness properties), and verified by experimental test approaches. Explored these materials property with ANN modeling and experimental test show that the more Ni-content added to the Cr-Mo alloy steel, the higher the ultimate and yield strength can achieve at every instant of tempering temperature. Likewise, fracture toughness, impact toughness, and percent of retained austenite of these materials were also investigated thoroughly as tempering temperature varies. Thus, a 1.55 % Ni-modified Cr-Mo alloy steel has a higher value of both impact toughness and fracture toughness compared with other Ni-modified alloy steels. Similarly, surface hardness was slightly decreased as the amount of Ni-content added increased at each instant of tempering temperature. Lastly, based on both predicted and experimental results, 1.55 % of Ni-modified Cr-Mo alloy steel showed a better combination of mechanical and toughness properties. Keywords: ANN modeling; Yield strength; Ni-modified; Tempering temperature; Fracture toughness; Surface hardness
Publisher
Trans Tech Publications, Ltd.