Parameter Identification of Lorenz System with Incomplete Information: Case of One Known and Two Unknown Functions

Author:

Shatalov Michael Y.1,Surulere Samuel A.1,Phadime Lilies M.1,Mthombeni Thomson T.2

Affiliation:

1. Tshwane University of Technology

2. Vaal University of Technology

Abstract

In the present paper, which is the continuation of the previous one, the problem of parameter identification of the Lorenz system is solved in assumption that only one of three functions is known at discrete time instants on finite time initial time interval. Two other functions are assumed to be unknown. The regular methods of guess values determination of the unknown parameters are developed. They are based on the Lagrange multiplier and auxiliary parameters approaches. A novel method of initial value problem solution is proposed in which the abovementioned guess values are used for more accurate estimation of the system parameters. It is demonstrated that the proposed IVP method simultaneously solves three different tasks: the problem of function interpolation from its discrete values on the initial time interval; the problem of unknown functions reconstruction on the same time interval, and the problem of extrapolation of all functions on limited time interval. It is also shown that the proposed method reconstructs the Lorenz attractor from limited data volume and data including random components.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

1. M. Shatalov, S. Surulere, L. Phadime, P. Kama, Parameter identification of Lorenz system with incomplete information, Part 1: Case of one unknown function, Computational Fluid Dynamics and Mathematical Modelling, in press.

2. W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002) 53-117.

3. C. Sparrow, The Lorenz Equations: Bifurcation, Chaos and Strange Attractors, Springer-Verlag, New York Inc., (1982).

4. A.B. Orue, G. Alvarez, M.Romera, G. Pastor, F. Montoya, S. Li, Lorenz system parameter determination and application to break the security of chaotic cryptosystems, arXiv/0606029 [nlin.CD] (2007) 01-05.

5. A.B. Orue, V. Fernandez, G. Alvarez, G. Pastor, M.Romera, S. Li, F. Montoya, Determination of the parameters for a Lorenz system and application to break a security of two-channel chaotic cryptosystems, Phys. Lett. A, 372/4 (2008) 5588-5592.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3