Design and Simulation of an Off-Grid Photovoltaic System with Duty Cycle Prediction Using Neural Network Controller

Author:

Zungeru Adamu Murtala1ORCID,Duncan Dauda1,Diarra Bakary1,Chuma Joseph1,Mosalaosi Modisa1,Mtengi Bokani1,Gaboitaolelwe Jwaone1,Lebekwe Caspar1

Affiliation:

1. Botswana International University of Science and Technology

Abstract

Global concerns over the inappropriate utilization of abundant renewable energy sources, the damages due to instability of fuel prices, and fossil fuels' effect on the environment have led to an increased interest in green energy (natural power generation) from renewable sources. In renewable energy, photovoltaic is relatively the dominant technique and exhibits non-linearities, leading to inefficiencies. Maximum Power Point is required to be tracked rapidly and improve the power output levels. The target is to use a Neural network controller by training historical data of ambient irradiance and temperature levels as inputs and voltage levels as output for the photovoltaic module to predict duty cycles across the DC-DC converter. The DC-DC converter is the electrical power conditioner at the Botswana International University of Science and Technology, Palapye Off-Grid photovoltaic system. Perturb and Observe algorithm on PSIM environment is only implemented to acquire the historical data for the training and Matlab for the modeling of the network. Relatively long period ambient irradiance and temperature data of Palapye were acquired from the Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) WeatherNet in Botswana. Matlab environment was used for the simulation of the backpropagation algorithm for training. The Neural network's feedforward to optimize the non-linear nature of the PV module input and output relationship with relatively fewer processes is required. The results show promising, and the Mean Errors appear to be typically about 0.1 V, and the best performance is 193.5812 at Epoch 13, while the regression delivered a relatively low measured error. The maximum power delivered by the duty cycles from the model with 90 % prediction accuracy. The article demonstrates Neural Network controller is more efficient than the conventional Perturb and Observe Maximum Power Point algorithm.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3