Dynamic Voltage Stability of Distribution Systems in the Presence of High Penetration of Photovoltaic Plants Using PSS/E Software

Author:

Sadek Sahar M.1,Hassan Amal A.1ORCID,Fahmy Faten H.1,El-Deib Amgad A.2,Yousef Hosam K.M.2

Affiliation:

1. Electronics Research Institute

2. Cairo University

Abstract

The intermittent nature of photovoltaic (PV) generation causes the voltage to fluctuate and may lead to instability, especially, in case of high penetration. In this paper, a methodology is proposed to control the reactive power generation of PV-inverters. The objective is to mitigate the voltage fluctuations at the point of common coupling (PCC) resulted from increasing or decreasing the active power output of PV plants which is dependent on solar radiation level. The generic PV-inverter models developed and recommended by the Renewable Energy Modeling Task Force (REMTF) of the Western Electricity Coordinating Council (WECC) is used to analyze the effect of high PV penetration on the dynamic voltage stability of distribution networks. Then, the tested distribution network with the embedded PV plants is modeled and simulated using PSS/E software. Levels of control that are built-in PV-inverters are tested in the case of normal operation and during disturbances. Comparison results show that the most suitable control methodology in case of disturbances and after fault clearance is the local voltage control. While the plant voltage control with coordinated V/Q control is the most preferable control methodology during normal operation.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of simulation software for energy systems: Design, functionality, and applications;Thermal Science and Engineering Progress;2024-08

2. A review on basic theory and technology of agricultural energy internet;IET Renewable Power Generation;2023-08-18

3. Feasibility Study of Integrating Photovoltaic Generation Power Plant into a Distribution Network in Pakistan;2021 31st Australasian Universities Power Engineering Conference (AUPEC);2021-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3