Affiliation:
1. University of Manchester
2. Queen’s University Belfast
Abstract
In this paper, the integration of Gas Engines with the Rankine cycle and Organic Rankine cycle for use as a combined cooling, heating and power (CCHP) system was investigated. The gas engine model, Organic Rankine Cycle model, Rankine Cycle model and single effect absorption chiller model were developed in Aspen HYSYS V7.3®. The system performance of the combination of the Rankine Cycle and Organic Rankine Cycle was investigated with two different configurations. The series and parallel combination of Rankine and Organic Rankine Cycle integration with the gas engine showed an increase of 7% and 15% respectively both in the overall system efficiency and power generated. The trigeneration system provided a cooling duty of 18.6 kW, a heating duty of 704 kW to a district heating system with 3.9 MW of power generated and an overall trigeneration efficiency of 70%. The system also gave a 9% increase in the power generated when compared to the gas engine without waste heat recovery whilst bottoming with Rankine cycle, Organic Rankine cycle and Absorption refrigeration system.Keywords: Modelling, Trigeneration, Gas Engines, Waste Heat Recovery, Rankine Cycle, Organic Rankine Cycle.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献