Dimensional and Thermal Reliability of Multi-Walled Carbon Nanotube Filled Natural Rubber Nanocomposites

Author:

Medupin Rasaq Olawale1ORCID,Abubakre Oladiran Kamardeen1,Abdulkareem Ambali Saka1,Muriana Rasheed Aremu1,Lawal Sunday Albert1

Affiliation:

1. Federal University of Technology

Abstract

The exceptional mechanical and thermal properties, conceivable with carbon nanotubes (CNTs) make a distinction of them as excellent choices for natural rubber nanocomposite reinforcement. Nigeria, in recent years, has been awash with foreign prostheses, many of which fail to meet the criteria of the International Society of Prosthetics and Orthotics (ISPO) for developing countries. However, there are major marked gaps that make them susceptibility to premature failure and dimensional instability, caused by a high rate of water absorption in a humid environment; owing to the dynamic nature of human gait. This paper critically examines the effect of water absorption, thermogravimetric and dynamic mechanical properties, on carbon nanotube-reinforced natural rubber nanocomposite (NC) for prosthetic foot application. CNTs were synthesised via catalytic chemical vapour deposition (CCVD) technique and the NCs were produced by using an electrically heated hydraulic press. Thermogravimetric analysis (TGA), water absorption rate and dynamic mechanical analysis (DMA) of the nanocomposites were carried out with a view to comparing the various compositions used in this paper. Of the five NCs developed (NR/MWCNT-0, NR/MWCNT-3, NR/MWCNT-6, NR/MWCNT-9, NR/MWCNT-12 and NR/MWCNT-15), NR/MWCNT-3 (3 g of MWCNT in 100 g of natural rubber) showed the highest thermal stability of 260 °C, optimal water absorption rate of 0.1% and highest quality energy storage and dissipation capacity, as indicated by 2.239 DMA loss factor curve amplitude, hence giving it a comfortable edge over its existing counterparts. The results of the various analyses carried out indicated, therefore, that reinforcing natural rubber with multi-walled carbon nanotube offers a reliable alternative material for the prosthetic industry.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3