Loading Effect of Hollow Glass Microsphere (HGM) and Foam Microstructure on the Specific Mechanical Properties and Water Absorption of Syntactic Foam Composite

Author:

Afolabi Olusegun Adigun1,Kanny Krishnan1,Mohan Turup1

Affiliation:

1. Durban University of Technology

Abstract

AbstractEpoxy syntactic foams (SF) filled with hollow glass microspheres (HGM) were prepared by simple resin casting method and characterization in this study. The effect of varying the amount of HGM on the specific mechanical and water absorption properties of SF composites were investigated. Five different composition of SF (SFT60-0.5 to SFT60-2.5) were compared with the neat epoxy matrix. The wall thickness of the microballoons differ because of its different percentile size distribution (10th, 50th and 90th), which reflects in its density variation. The results show that the specific tensile and flexural strength increases with an increasing filler (HGM) content. The density of SF filled with HGM reduces with increasing volume fraction of filler content. Scanning electron microscopy was done on the failed samples to examine the fractured surfaces. The water absorption capacity of the SF was also investigated as it relates to the HGM volume fraction variation. All the syntactic foam composition shows a better diffusion coefficient capacity than the neat epoxy resin. This makes it applicable in structural purposes and several marine application products such as Autonomous Ultimately Vehicle (AUV).

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3