The Impact of the Dislocation Density, Lattice and Impurity Friction on the Dynamics of Expansion of a Dislocation Loop in FCC Metals

Author:

Petelina Yulia1,Kolupaeva Svetlana2,Kayuda Anna1,Shmidt Anna1,Vorobyeva Olesya1,Petelin Aleksander1

Affiliation:

1. Tomsk State University

2. Tomsk State University of Architecture and Building

Abstract

The study of the role of various factors in plastic behavior of materials is carried out using a mathematical model that takes into account fundamental properties of deformation defects in a crystal lattice based on the continuum theory of dislocations. Calculations were performed for copper, nickel, aluminum, and lead using a specialized software system Dislocation Dynamics of Crystallographic Slip. It has been shown that a decrease in the density of dislocations from 1012 m-2 to 1011 m-2 leads to an increase in the dislocation path in 10−16 times, and the maximum velocity in 1.5−2 times in copper and nickel, by nearly 20% in aluminum, and practically remains unchanged in lead. A decrease in the lattice and impurity friction from 2 MPa to 0.1 MPa leads to a linear increase in the path and the maximum velocity of the dislocation by 10−25%.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3