Acrylic Bone Cements: New Insight and Future Perspective

Author:

Cavalu Simona1

Affiliation:

1. University of Oradea

Abstract

The history of acrylic bone cement comprise a long period of time, Sir John Charnley being considered the founder of modern artificial joint replacement, as he started to develop the cementing in the late 1950s. Acrylic bone cements (ACB) are polymer-ceramic composites based on polymethyl metacrylate (PMMA), widely used in orthopaedics as suture materials and fixation devices. The main features of these materials are: 1) biocompatibility and ability to support new bone growth (osteoconductive) and 2) bioactivity (ability to form a calcium phosphate layer on its surface). The main function of the cement is to serve as interfacial phase between the high modulus metallic implant and the bone, thereby assisting to transfer and distribute loads. During years of follow up, cemented prosthesis with acrylic bone cements (ABC) demonstrated a good primary fixation and load distribution between implant and bone, along with the advantage of fast recovery of the patient. However, several problems are still persisting, as the orthopedic acrylic bone cements have to meet several medical requirements, such as low values of maximum cure temperature in order to avoid thermal necrosis of the bone tissue during the setting time, appropriate setting time (so that cement does not cure too fast or too slowly) and high values of compressive strength in order to withstand the compressive loads involved by normal daily activities. Generally, the improvement mechanical properties can be realized in three directions: 1) by searching alternative material to PMMA acrylic bone cements; 2) chemical modification of PMMA; and 3) the reinforcement of PMMA by adding different bioactive particles, antimicrobials, vitamins. The aim of this rewiew is to explore the development of bone cements in the last decade, to highlight the role of bone cement additives with respect to mechanical properties and limitations of polymethylmethacrylate in orthopaedic surgery. The behavior of antibiotic-loaded bone cement is discussed, compared with other alternative additives including nanofillers, together with areas of research that are now open to explore new insights and applications of this well known biomaterial.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3