High Strain Rate Compression Testing of Hot-Pressed TRIP/TWIP-Matrix-Composites

Author:

Eckner Ralf1,Krüger Lutz1

Affiliation:

1. Technische Universität Bergakademie Freiberg

Abstract

Metal matrix composites with ceramic reinforcements such as particles or fibers have come into focus during the past decades due to rising requirements on engineering materials. In this work, composite materials out of high-alloy CrMnNi-steel matrices with varying Ni-contents (3 wt.% and 9 wt.%) and 10 vol.% Mg-PSZ were processed by hot-pressing. The variation in Ni-content resulted in a change in stacking fault energy (SFE) which significantly influenced the deformation mechanisms. The mechanical behavior of the developed composites was investigated in a wide strain rate range between 0.0004 s-1 and 2300 s-1 under compressive loading. This was done by a servohydraulic testing system, a drop weight tower, and a Split-Hopkinson Pressure Bar for the high strain rates. To study the influence on the deformation mechanisms such as martensitic transformations and/or twinning, interrupted tests were also carried out at 25 % compressive strain. Subsequent microstructural examinations were done by a magnetic balance to measure the quantity of α’-martensite as well as by scanning electron microscopy (SEM). The results show an increase of strength and strain hardening with decreasing SFE of the matrix due to increased α’-martensite formation. The addition of the Mg-PSZ particles resulted in further strengthening over almost the entire deformation range for all investigated composites. At high strain rates quasi-adiabatic heating suppressed the martensite transformation and reduced the strain hardening capacity of the matrix. Nonetheless the particle reinforcement retains its strengthening effect.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3