Influence of Cutting Tool Wear on Contact Stresses and Temperature Distribution in Titanium Alloy Machining

Author:

Kozlov Victor1,Zhang Jia Yu1,Letshiner Ekaterina1,Zhao Wen Ze1

Affiliation:

1. National Research Tomsk Polytechnic University

Abstract

This paper analyses the results of experimental research of contact stresses distribution over an artificial flank wear-land and temperature distribution in a cutting wedge in a free orthogonal turning of the disk made from titanium alloy (Ti-6Al-2Mo-2Cr) by a cutter with a sharp-cornered edge and with a rounded cutting edge. The investigation was carried out by the method of “split cutter” (sectional tool) and method of variable length of an artificial flank wear land. Experiments with variable feed rate and cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge, the highest normal contact stress over the flank land (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with a length of 0.2…0.6 mm. At larger distance from the cutting edge, the value of normal contact stress is dramatically reduced to 1100…500 MPa. The character of normal contact stresses for a rounded cutting edge is different: it is uniform and its value is approximately 2 times smaller as compared to machining with sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in chip formation region and explains working capacity of very worn-out cutting tools in machining titanium alloys. The results of experimental research of temperature distribution in the cutting tool wedge show that temperature reaches 1000 °С at essential wear over the flank surface. Such high value of temperature on the contact surface causes softening of work material, and explains the small value of tangential contact stresses (τh = 800…200 MPa) and reduction of normal contact stresses σh far from the cutting edge for a sharp-cornered cutting edge.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3