Hydrogenous Fuel as an Energy Material for Efficient Operation of Tandem System Based on Fuel Cells

Author:

Zubkova Marina1,Stroganov Alexander2,Chusov Alexander1,Molodtsov Dmitry1

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University

2. Lumex Instruments Canada

Abstract

This paper presents the results of relatively cheap hydrogenous fuel usage as an energy material for energy supply stand-alone environmentally friendly systems creation. Usage of fuel cells running on hydrogenous fuel is a promising direction in creation of stand-alone power supply systems in low-rise residential development. Presented thermodynamic calculations and material balance data for electric and thermal components assessment in considered ways to use convention products, performance enhancement in tandem system based on fuel cells with full heat regeneration. The total effective efficiency of the tandem installation including the fuel converter, separating system, high-temperature fuel cell, low-temperature fuel cell is higher than for each of the fuel cell elements separately. Distribution of H2 for LTFC and HTFC is determined in compliance with the conditions of the positive heat balance to compensate the heat used for the endoenergic reaction in the converter, input stream heating and heat losses. The total effective efficiency under making full use of recovered heat for considered tandem system depends on the efficiency of its constituent fuel cells. Energetically effective distribution of H2 on streams of high-temperature and low-temperature oxidation according to a position of observance of positive thermal balance on an external contour of tandem system, is reached by operation of HTFC electric efficiency in the range of 50 ÷ 55%.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3