Optimizing Cold Compression Deformation to Remove Residual Stresses in Die Forged Disc of Al-Mg-Si Alloy

Author:

Akhtar Naveed1,Afzal Muhammad1,Awais Muhammad1,Akbar Muhammad1

Affiliation:

1. Quaid-e-Azam University

Abstract

Quenching residual stresses in Al-Mg-Si alloy forged disc were balanced via cold deformation compression method. In this experiment firstly, the forged disc of Φ210x52 mm was prepared from extruded stock material of Φ160x90 mm through close die forging technique. Next, the forged discs were quenched in water and cold compressed immediately. Finally, the discs were artificial aged to finish in T652 temper. Close die forging and cold compression deformation was performed on a 1200 Ton hydraulic forging press. The amount of cold compression deformation was varied from 2.0 to 5.0% to gauge the optimum level of cold compression for the removal of quenching residual stresses. The residual stresses were measured in terms of dimensional stability of the machined component. Results showed that the 3.8% cold compression deformation was the optimized value for the work piece geometry under investigation. Further, the effect of cold (room temperature) and hot water (~60°C) quenching on the residual stresses was also studied and compared with that of cold compression method.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3