A Review of Microstructure and Microtexture of Tertiary Oxide Scale in a Hot Strip Mill

Author:

Yu Xiang Long1,Jiang Zheng Yi2,Zhao Jing Wei2,Wei Dong Bin3,Zhou Ji1

Affiliation:

1. Tsinghua University

2. University of Wollongong

3. University of Technology

Abstract

In hot rolling, metal oxides formed on steel surface can generally be classified as primary, secondary and tertiary oxide scales, corresponding to the reheating stages, the roughing stages and the finishing passes of continuous mills, respectively. The tertiary oxide scale grows into the final products on the hot-rolled steel strip during the finishing rolling and the subsequent cooling down to ambient temperature. We provide here a systematic overview of the oxidation mechanism, microstructure and microtexture development of the tertiary oxide scale. Mechanism of oxidation and Fe3O4 precipitation in tertiary oxide has been given as the fundamental theory. Three main sections has been divided in this review. The first section includes experimental investigations on microstructure evolution from the formation of oxide scale during hot rolling, then through continuous cooling, to Fe3O4 precipitation behaviour in storage cooling of hot-coiled strip. By using electron backscatter diffraction (EBSD) to characterise both the steel substrate and the oxide scale concurrently, the second section has further dealed with the texture-based analysis of oxide scale: phase identification, orientation analysis and coincident site lattice (CSL) boundaries. The third section has provided the general type of crystallographic texture and its evolutions in deformed Fe3O4 and steel substrate. Finally, the upcoming challenges have been addressed in this intriguing and promising research field.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3