Sintering of Silver Nanoparticles at Room-Temperature for Conductive Ink Applications

Author:

Rezaga Bethel Faith Y.1,Balela Mary Donnabelle L.1

Affiliation:

1. University of the Philippines

Abstract

Silver (Ag) nanoparticles synthesized in an aqueous system was sintered at room temperature using NaCl solution. The Ag nanoparticles have an average diameter of about 24 nm. After dispersing the Ag nanoparticles in 50mM NaCl solution, a significant increase in particle size to about 206 nm was observed. On the other hand, the particle size was also increased to about 175 nm when the Ag nanoparticles were printed and then 50mM NaCl solution was dropped onto the printed Ag nanoparticles. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance was reduced from 57.7 to 6.5 and 6.7 ohms for the as-prepared and sintered Ag nanoparticles using two different treatments, respectively. The sintered Ag nanoparticle ink formulation exhibit high conductivity when drawn on both cellulose acetate film and bond paper even after bending and folding of the substrates.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3