The Sliding Hinge Joint: Final Steps towards an Optimum Low Damage Seismic-Resistant Steel System

Author:

Ramhormozian Shahab1,Clifton George Charles1,MacRae Gregory A.2,Khoo Hsen Han3

Affiliation:

1. University of Auckland

2. University of Canterbury

3. Mitchell Vranjes Consulting Engineers (MV Engineers)

Abstract

The Sliding Hinge Joint with Asymmetric Friction Connectors (SHJ), to give its full name, is a semi-rigid moment resisting joint used between the beams and columns of a moment-resisting steel frame and also at the column base between the column and the ground. It’s performance is intended to be as follows: 1) On completion of construction, rigid under serviceability limit state conditions, 2) During a severe earthquake, allowing controlled rotation between the column and the beam or foundation on designated friction sliding planes within the connection, then 3) Returning to its rigid in-service condition at the end of the severe shaking with the building returning to its pre-earthquake position (self-centering). During its development and proof of concept through large scale testing, the initial results showed that the SHJ as originally designed and detailed performs 1) and 2) very well, but the bolts in the friction sliding planes loose much of their original installed bolt tension during significant sliding, lowering the level at which rotation within the joint will occur post severe earthquake. A concerted research programme of component testing, analytical model development and numerical modelling in recent years has developed solutions to the bolt tension loss issue as well as enhanced the joint’s performance to deliver dependable self-centering capability for the building. This work marks the final steps towards developing an optimum low damage seismic-resisting steel moment frame system. This paper presents key findings from the research work and general recommendations for the optimum performing sliding hinge joint.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3