Effect of Poly(D-Lactic Acid)-co-Polyethylene Glycol on the Crystallization of Poly(L-Lactic Acid)

Author:

Kaewlamyai Ployrawee1,Lertworasirikul Amornrat1

Affiliation:

1. Kasetsart University

Abstract

Poly (lactic acid) (PLA) is a biopolymer derived from renewable resources and can be disposed of without creating harm to the environment. PLA can be formed by thermoplastic processes and has good mechanical properties. However, its disadvantages are a high crystallization temperature, slow crystallization rate, poor heat stability and low ductility. In the past, it was found that poly (D-lactic acid) (PDLA) can form complexes with poly (L-lactic acid) (PLLA) and the complexes could accelerate the crystallization and increase the degree of crystallinity of the PLA, but decrease the ductility. It is known that polyethylene glycol (PEG) can improve the ductility of PLLA. In this research, PDLA was copolymerized with PEG in an attempt to improve both crystallization behavior and ductility of PLLA. Poly (D-lactic acid)-co-polyethylene glycol (PDEG) was synthesized by ring opening polymerization using D-lactide and PEG at a D-lactide:PEG weight ratio of 10:3. The PDEG was blended with PLLA with a PDEG content of 0wt% to 50wt% by melt blending process. Fourier transform infrared spectrometry (FT-IR) and X-Ray diffractometry (XRD) confirmed the stereocomplex formation between PDEG and PLLA. Characterization by differential scanning calorimetry (DSC) revealed that crystallization temperatures of the blends were decreased in the presence of PDEG. Storage moduli and tan of the blends obtained from dynamic mechanical analysis (DMA) decreased as PDEG content increased. Polarized optical microscopy (POM) micrographs of blends with PDEG content of 1wt% to 5wt% obviously showed that crystallization rate was increased. PDEG has the potential to be an effective nucleating agent and efficient plasticizer for PLLA.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3