Finite Element Analysis of Composite Replaceable Short Links

Author:

Zimbru Mariana1,D'Aniello Mario1,Stratan Aurel2,Landolfo Raffaele1,Dubină Dan2

Affiliation:

1. University of Naples ‘Federico II’

2. Politehnica University of Timișoara

Abstract

Eccentrically braced frames (EBF) with detachable short links are an efficient solution for buildings in seismic areas owing to their high energy dissipation capacity and ductility and ease of repair in the earthquake aftermath. Past studies revealed that short links can develop shear overstrength (i.e. Vu/Vp, where Vu is the ultimate shear strength and Vp the corresponding plastic resistance) larger than the value recommended in EC8 [1] (i.e. Vu/Vp =1.5). One of the factors causing the higher shear overstrength is the presence of axial restraints that leads to the development of tensile forces in the link at large levels of rotation. Another reason for higher shear overstrength is the composite slab that can resist the shear distortion together with the short link. Within the DUAREM project [2], full scale pseudo-dynamic experimental tests were carried out on 3D EBF allowing thus the investigation of replaceable links considering two arrangements: (i) steel solution – the link was uncoupled from the slab (ii) composite solution – the slab and link are connected. The aim of this paper is to present the results of finite element analyses (FEAs), based on calibrated models and the comparison between the obtained results and the experimental tests performed by [2]. The numerical investigation carried out aims to evaluate the shear overstrength and the level of axial force in the link for both tested configurations.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3