Affiliation:
1. Hiroshima University
2. IHI Corporation
3. Japan Steel Works, Co, Ltd.
Abstract
Fe-based shape memory alloy (Fe-SMA) shows the smaller shape memory effect (SME) compared with the widely-used NiTi alloy. However, because its production cost is much lower than the NiTi alloy, Fe-SMA is challenged to be applied in civil engineering fields such as vibration absorbers and joints. A key of the SME is stress-induced martensitic transformation. Thus, it is important to evaluate an amount of martensite, which can control such excellent performance of Fe-SMA, for increasing a reliability of the Fe-SMA. However, until now, it is quite hard to find studies to evaluate the amount of martensite in Fe-SMA experimentally during deformation at various strain rates, especially during high speed deformation. Instead of the evaluation, it is convenient to capture change in volume resistivity, which has a correlation with the amount of martensite, at various strain rates. In the past, the volume fraction of α’ martensite is evaluated by using a resistance measurement based on the four point-probes method. The advantages of the method are quite simple and relatively high precision, however, its disadvantages are a requirement of strictly-precise reference resistor and power supply, and it is easily affected from noise. In this study, at first, a circuit of Kelvin double bridge with a higher precision is assembled. Then, the rate sensitivity of volume resistivity in Fe-28Mn-6Si-5Cr alloy, which is a kind of Fe-SMA, is experimentally estimated by using the assembled circuit of Kelvin double bridge during tensile testing at various strain rates.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献