Abstract
Two different approaches are proposed in this study to enhance the bioactivity of hydroxyapatite-based scaffolds for bone tissue regeneration. The first method consists in a structural modification of Hydroxyapatite (HA) through doping it with Magnesium (1,3% wt) while the second one in using HA in combination with a calcium silicate, i.e. Wollastonite (WS), to form a composite bioceramic. Scaffolds with high and strongly interconnected porosity (pores ranging from 300 to 800 µm) were produced throughout both procedures. Higher mechanical properties in compression were obtained when the composite Ws/HA bioceramic was adopted. That one showed a weight loss after 6 months in physiological solution seven times higher than doped HA. Preliminary in vitro tests highlighted that both kinds of scaffold allowed the adhesion of MG63, without significant differences in terms of vitality, indicating a good biocompatibility of both used biomaterials.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献