Effect of Plastic Deformation on Elastic and Plastic Recovery in CP-Titanium

Author:

Khayatzadeh Saber1,Rahimi Salah1,Blackwell Paul1

Affiliation:

1. University of Strathclyde

Abstract

The springback associated with cold deep drawing of sheet metals leads to undesired dimensional changes in the final products. This is often due to the heterogeneous plastic deformation in different areas of the intended geometry that creates various stress states throughout the part. The major objective of this study is to understand the interconnection between springback, level of plastic deformation, degradation of elastic modulus and strain recovery in a CP-Ti material. The mechanical properties of the sheet material and the dependency of mechanical properties on directionality are investigated by examining samples from three orientations of parallel to the rolling direction (RD), at 45° to RD and perpendicular to RD. The degradation of elastic modulus as a function of level of plastic deformation was explored for 0° and 45° samples by conducting multi-step uniaxial loading-unloading in tension.The experimental results showed that the mechanical properties vary for each direction, with the lowest elastic modulus along RD. A significant degradation was observed in elastic modulus (up to 50% reduction) with increased plastic deformation. This resulted in more strain relaxation compared to that associated with the initial elastic modulus. For stresses below 100MPa, a nonlinear (plastic) recovery was observed, resulting in additional relaxation in the total strain upon load removal in each step of the interrupted tests. This plastic recovery behaviour is observed to be dependent on sample orientation. It is concluded that accurate prediction of springback during sheet metal forming, requires a material model which takes into accounts the directional degradation of elastic modulus and the plastic recovery as a function of plastic deformation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3