Effect of Thermo-Mechanical Treatment (TMT) on Hardness of Heat-Treated Al-Mg-Si (6082) Alloys: Experimental Correlation Using (DOE) Method

Author:

Tash Mahmoud M.1,Alkahtani S.1

Affiliation:

1. Salman bin AbdulAziz University

Abstract

The present study was undertaken to investigate the effect of Thermo-mechanical Treatment (TMT) on aging and hardness of Al-Mg-Si (6082) alloys. The effect of cold work after solution treatment, aging time and temperature on the microstructure and hardness were studied. Hardness measurements were carried out on specimens prepared from 6082 alloys in the as solution treated specimens and heat-treated conditions, using different cold work percentage before aging treatment. Aging treatments were carried out for the as solution treated specimens (after quenching in water) as well as for the as cold worked specimens (after solution treatment and quenching in water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Artificial aging was performed at 100 °C, 150 °C, and 200 °C for various times. It is noticed that cold work, following solution treatment, accelerates the precipitation rate leading to a rise in strength.A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of cold work and heat treatment parameters and any interactions between them on the hardness of 6082 alloys. A mathematical model is developed to relate the alloy hardness with the different metallurgical parameters i.e. Cold work prior solution heat treatment (CWBSHT), Cold work after solution heat treatment (CWASHT), Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), Cold work after aging treatment (CWAAT), Annealing temperature (An.T0C) and Annealing time (An.t min) to acquire an understanding of the effects of these variables and their interactions on the hardness of Al-Mg-Si 6082 alloys.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3