Vibration Fault Diagnosis of Rotating Machinery Using PSO-Based Radial Basis Function Network

Author:

Sun Huo Ching1,Huang Chao Ming2,Huang Yann Chang1,Chen Hsing Feng1

Affiliation:

1. Cheng Shiu University

2. Kun Shan University of Technology

Abstract

A particle swarm optimization-based radial basis function network (PSO-RBFN) is presented to diagnose vibration faults of steam turbine-generator sets (STGS) in a power plant. The proposed PSO algorithm is used to automatically tune the control parameters of the RBFN. The test results demonstrate that the proposed PSO-RBFN has a higher diagnostic accuracy than the RBFN and multilayer perceptron network (MLPN) trained by error back-propagation algorithm. Moreover, this paper has demonstrated that the proposed PSO-RBFN can be as a reliable tool for vibration fault diagnosis of STGS.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3