SPS Method for Manufacturing Carbide Materials

Author:

Jalabadze Nikoloz1,Nadaraia Lili1,Khundadze Levan1

Affiliation:

1. Georgian Technical University

Abstract

Due the rapid heating rate combined with high pressure by the Spark Plasma Sintering (SPS) technologies possible manufacture a wide range of novel materials with exceptional properties that cannot be achieved using conventional sintering techniques. Hard metals are, from a technical point of view, one of the most successful composite materials. An overview of the metallurgical reactions during the SPS sintering process of powder mixtures for the manufacture of hard metals is presented. The relatively complex phase reactions in the multi-component system TiC-Mo-W-Ni are discussed. There were elaborated a new technology for the fabrication of nanocrystalline hard metals of a new class assigned for the production of articles with high different characteristics. Elaborated materials are characterized by high melting temperature, hardness, wear-resistance, and satisfactory strength at high temperature and corrosive resistance. Through the use of developed technology and the appropriate structural condition gives possibility to achieve high physical-mechanical characteristics. Obtaining of composite materials via elaborated technology is available from the corresponding complex compounds and directly consisting elements too. In this case High-temperature Self-propagation Synthesis (SHS) and spark plasma sintering/synthesis (SPS) process are united and during a single operation it is possible to get not only the powder materials but at the same time obtain required details.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3