Investigations of Energy Separation Effect in Vortex Tube for Natural Gases

Author:

Wang Wen Chuan1,Fang Xiang Jun1,Liu Shi Long2,Sun Wen Long1

Affiliation:

1. Beihang University

2. Petrochina MROC

Abstract

This paper aims to investigate fixed composition natural gases including N2, CH4 and C2H4 energy separation effect in vortex tube. Energy separation phenomena of those gases were investigated by means of three-dimensional Computational Fluid Dynamics (CFD) method. Flow fields of natural gases in fixed inlet boundary conditions were simulated. The results main factors were found that affect the energy separation with cold mass fraction being 0.7 and pressure drop ratio being 3.90. At the same time, this paper has illustrated the effects and tendencies of energy separation with gases in the tube under the same cold mass flow fraction and cold pressure ratio. The results show mixture gases total temperature difference effect is unchanged varied with the cold mass fraction; CH4% has no effect on the vortex cold end temperature separation, but varied of CH4% has an influence in total temperature and hot end separation effect; total temperature separation effect of CH4% was divided into two sections, one is0%-80%, and the other 80%-100%.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3