Application of HSMM on the State Recognition for Diesel Engines

Author:

Huang Qiang1,Cheng Wang1,Ding Shi Feng1

Affiliation:

1. Jiujiang University

Abstract

It is significant to identify the running-states of diesel engines for ensuring its running stability, fuel economy and emission behavior. Vibration diagnosis is an on-line prognostics and diagnosis technique by picking-up the frequency characters of the vibration signal on the diesel engine. In the paper, combining with the wavelet noise reduction and character extraction with varying scales, the Hidden Semi-Markov model (HSMM) is built by the example of the inlet valve abrasion to recognize the running-states effectively. According to experiment and simulation researches, it indicates that the identification veracity is 96.9% in the 160 test samples after training the HSMM with 120 training samples. This state recognition method is satisfied for the engineering demand, and it can be applied to vibration analysis for other complex machineries.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3