Abstract
The micromechanical properties of a Al alloy/SiC hollow sphere syntactic foams composite material have been studied using the Solidwork simulation code applied the finite element method (FEM). The simulated results have shown that the values of quasi-static compressive strength, plateau stress, and densification strain are 175 MPa, 120 MPa and 0.50, respectively. The general trend of dynamic stress–strain graphs is similar to quasi-static compression graphs. The compressive properties of the composite are not strain rate sensitive. The simulated peak strength value is ≈140 MPa. Al matrix and SiC hollow sphere exhibit different mechanical behaviour. The ultimate stress is found near the interface of composites. The failure initiates by the fracture of weak particles, some of the cracks can propagate to the matrix as well. Shear band formation in the matrix and shearing of SiChs lead to the major failure activity.
Publisher
Trans Tech Publications, Ltd.