The Application of Tolerant Rough Set Neural Network to Fighter Fault Diagnosis

Author:

Sun Guo Qiang1,Wang Hong Li1,Tao Jun2,Li Xu Bing2

Affiliation:

1. Second Artillery Engineering University

2. Aviation University of Air Force Changchun

Abstract

Conventional rough set theory is based on indiscernibility relation, which lacks the adaptive ability to data noise or data missing. Furthermore, it may present qualitatively whether or not the faults exist, but it cant compute accurately the value of the faults. Though the neural network has ability of approximating unknown nonlinear systems, but it cant distinguish the redundant knowledge from useful knowledge, so its classification ability cant catch up with the rough set classifier. This paper combines the rough set theory and the tolerant rough set neural network to diagnose the rudder faults of fighter, which solves well the problem of fault diagnosis and fault degree computation. Simulation results demonstrate the effectiveness of the proposed method.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3