Multi-Robot Path Planning Based on Learning Classifier System with Policy Gradient Reinforcement Learning and Support Vector Machine (PGRL-SVM)

Author:

Song Qiu Li1,Zhao Jian Bao1

Affiliation:

1. Shangqiu Institute of Technology

Abstract

This paper presented a novel approach to solving the problem of robot avoidance collision planning. A Learning Classifier System is a accuracy-based machine learning system using gradient descent that combines covering operator and genetic algorithm. The covering operator is responsible for adjusting precision and large search space according to some reward obtained from the environment. The genetic algorithm acts as an innovation discovery component which is responsible for discovering new better path planning rules. The advantages of this approach are its accuracy-based representation, that can be easily reduce learning space,online learning ability,robustness due to the use of genetic algorithm.

Publisher

Trans Tech Publications, Ltd.

Reference8 articles.

1. Jie shao, Jingyu Yang. Multi-robot Reinforcement Learning Based On Learning classifier system with Gradient Descent Methods . Journal of Computational Information Systems. 2010 Vol. 6 (8) : 2449- 2455.

2. K. -T. Hung, J. -S. Liu, and Y. -Z. Chang, Smooth path planning for a mobile robot by evolutionary multiobjective optimization, IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, Florida, June (2007).

3. J. van den Berg, M. Lin, and D. Manocha, Reciprocal velocity obstacles for real-time multi-agent navigation, in Proc. IEEE Int. Conf. Robot. Autom., Pasadena, CA, May 2008, p.1928–(1935).

4. M. Gemeinder, and M. Gerke, GA-based path planning for mobile robot systems employing an active search algorithm, Applied Soft Computing, Vol. 3, pp.149-158, (2003).

5. S. M. Baneamoon, R. Abdul Salam, A. Z. Hj. Talib, Learning Process Enhancement for Robot Behaviors, International Journal of Intelligent Technology, Volume 2 Number 3, ISSN 1305-6417, 2007, pp.172-177.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3