Numerical Investigation of Flow in an Asymmetric Plane Diffuser Using a Multi-Scale Turbulence Model

Author:

Shi Zhong1,Li Zhi Qiang1,Gao Ge1,Dong He1,Guo Jian2,Tang Wen Dong3

Affiliation:

1. Beijing University of Aeronautics and Astronautics

2. Aviation Industry Corporation of China

3. Northwestern Polytechnical University

Abstract

The flow in an asymmetric plane diffuser was simulated using both the multiscale turbulence model based on the variable interval time average method and the standardk-εmodel based on the Reynolds average method. The numerical method used in this simulation is an unstructured staggered mesh scheme. The capability of the multi-scale model to simulate flow in an asymmetric plane diffuser has been validated. Pressure coefficient, frictional resistance coefficient and mean velocity profiles downstream are in agreement with experiments. Moreover, the results predicted by the multi-scale model are better than that predicted by the standardk-εmodel. The computational results show that the multiscale turbulence model can successfully simulate this type of separated flow.

Publisher

Trans Tech Publications, Ltd.

Reference13 articles.

1. S. Obi, K. Aoki and S. Masuda. Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser [R]. In: Proceedings of the 9th symposium on turbulent shear flows, Kyoto, (1993).

2. C. U. Buice and J. K. Eaton. Experimental investigation of flow through an asymmetric plane diffuser[R]. Stanford, CA, USA: Thermo sciences Division, Department of Mechanical Engineering, Stanford University, Report No. TSD-107, (1997).

3. J. Gullman-Strand, O. Tornblom and B. Lindgren et al. Numerical and experimental study of separated flow in a plane asymmetric diffuser [J]. International Journal of Heat and Fluid Flow, vol25, 451-460, (2004).

4. P. Durbin Separated flow computations with the k-ε-v2 model. AIAA J., vol. 33, 659–664, (1995).

5. D. D. Apsley and M. A. Leschziner. Advanced turbulence modelling of separated flow in a diffuser [J]. Turbulence and Combustion, vol63, 81–112, (1999).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3