Energy Consumption Forecasting in Hong Kong Using ARIMA and Artificial Neural Networks Models

Author:

Lai Sue Ling1,Liu Ming1,Kuo Kuo Cheng1,Chang Ray1

Affiliation:

1. Chinese Culture University

Abstract

There have been considerable efforts contributed to the development of effective energy demand forecast models due to its critical role for economic development and environmental protection. This study focused on the adoption of artificial neural network (ANN) and autoregressive integrated moving average (ARIMA) models for energy consumption forecasting in Hong Kong over the period of 1975-2010. Four predictors were considered, including population, GDP, exports, and total visitor arrivals. The results show most ANN models demonstrate acceptable forecast accuracy when single predictor is considered. The best single input model is the case with GDP as predictor. Population and exports are the next proper single inputs. The model with total visitor arrivals as sole predictor does not perform satisfactorily. This indicates that tourism development demonstrates a different pattern from that of energy consumption. In addition, the forecast accuracy of ANN does not improve considerably as the number of predictors increase. Findings imply that with the ANN approach, choosing appropriate predictors is more important than increasing the number of predictors. On the other hand, ARIMA generates forecasts as accurate as some good cases by ANN. Results suggest that ARIMA is not only a parsimonious but effective approach for energy consumption forecasting in Hong Kong.

Publisher

Trans Tech Publications, Ltd.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3