Research on Improved Clustering Algorithm on Web Usage Mining Based on Scientific Analysis of Web Materials

Author:

Li Bin1,Yang Jin1,Liu Cai Ming1,Zhang Jian Dong1,Zhang Yan1

Affiliation:

1. Leshan Normal University

Abstract

Clustering analysis is an important method to research the Web user’s browsing behavior and identify the potential customers on Web usage mining. The traditional user clustering algorithms are not quite accurate. In this paper, we give two improved user clustering algorithms, which are based on the associated matrix of the user’s hits in the process of browsing website. To this matrix, an improved Hamming distance matrix is generated by defining the minimum norm or the generalized relative Hamming distance between any two vectors. Then, similar user clustering are obtained by setting the threshold value. At the last step of our algorithm, the clustering results are confirmed by defining the clustering’s Similar Index and setting sub-algorithm. Finally, the testing examples show that the new algorithms are more accurate than the old one, and the real log data presents that the improved algorithms are practical.

Publisher

Trans Tech Publications, Ltd.

Reference9 articles.

1. J. Srivastava, etal, Web usage mining: Discovery and applications of usage patterns from web data, SIGKDD Explorations, Vol. 1-2( 2000), p. l2-23.

2. B. Mobasher and R. Cooley, Creating adaptive Web sites through Usage-based clustering of URLs, Proc of the 1999 IEEE Knowledge and Data Engineering Exchange workshop, New York: IEEE Press (1999), pp.32-37.

3. G. Paliouras, et al, Clustering the users of large web sites into communities, Proc of the 17th Int Conf on Machine Learning, San Mateo: Morgan Kaufmann (2000), p. 7l9-728.

4. Y. L. Yang, X. D. Guan and J. Y. You, Mining the page Clustering Based on the Content of Web Pages and the Site Topology, Journal of Software, Vol. 13-3(2002), pp.467-469.

5. Q. B. Song and J. Y. Shen, An Efficient And Multi-Purpose Algorithm For Mining Web Logs, Journal of Computer Research & Development, Vol. 38-3(2001), pp.328-333.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3