Neural Network Prognostic Model for Predicting the Fire Resistance of Eccentrically Loaded RC Columns

Author:

Lazarevska Marijana1,Cvetkovska Meri1,Knežević Miloš2,Trombeva Gavriloska Ana3,Milanovic Milivoje3,Murgul Vera4,Vatin Nikolay4

Affiliation:

1. Ss. Cyril and Methodius University in Skopje

2. University of Podgorica

3. State University of Novi Pazar

4. Donbas National Academy of Civil Engineering and Architecture

Abstract

Using the concept of the artificial neural networks and the results of the performed numerical analyses as input parameters, the prediction model for defining the fire resistance of RC columns incorporated in walls and exposed to standard fire from one side, has been made. A short description of the numerical analyses of columns exposed to standard fire ISO 834, conducted by the computer software FIRE are presented in this paper. The software is capable of predicting the nonlinear response of reinforced concrete elements and plane frame structures subjected to fire loading, carrying out the nonlinear transient heat flow analysis and nonlinear stress-strain response associated with fire.

Publisher

Trans Tech Publications, Ltd.

Reference16 articles.

1. V.V. Belov, K.V. Semenov and I.A. Renev: Fire resistance of reinforced concrete constructions: models and methods of calculation. Magazine of Civil Engineering, vol. 6 (2011) pp.58-61.

2. D.E. Kolomiyczev, A.O. Rodicheva and V.A. Ry'bakov: Estimation of fire resistance of inserted floor fragment based on steel C-shaped profiles. Magazine of Civil Engineering, vol. 8 (2011) pp.32-37.

3. A.V. Ulybin and S.D. Fedorov: Ultrasonic method used for the estimation of damage zone in reinforced concrete after the fire, Magazine of Civil Engineering, vol. 7 (2009) pp.38-40.

4. D.V. Kurlapov: Influence of high temperatures of fire on building structures. Magazine of Civil Engineering, vol. 4 (2009) pp.41-43.

5. V.A. Kazakova, A.G. Tereshchenko and E.S. Nedviga: The high-rise buildings fire safety. Construction of Unique Buildings and Structures, vol. 4 (2014) pp.38-56.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3