An Analysis of the Ambient Condition Effect on Biodiesel Spray Using Constant Volume Chamber

Author:

Jaat Norrizam1,Khalid Amir2,Ramsy Him1,Manshoor Bukhari1,Basharie Siti Mariam1

Affiliation:

1. Universiti Tun Hussein Onn Malaysia

2. Structural Impact and Crashworthiness Research Cluster

Abstract

Diesel engines are high compression ignition engine which are now very vastly used for heavy vehicles and machineries. Diesel fuel is compressed under the right condition to ignite inside the constant volume chamber. Researchers have been studying for many years on ways to increase the efficiency of diesel engine as well as reduce the emission. The main idea of this research is to understand the effect of temperature on the spray characteristics, as well as fuel-air mixing characteristics. These are the characteristics responsible for ignition of diesel sprays. This research is first conducted by investigating the influence of biodiesel properties and ambient condition on the mixture formation especially at early stage of fuel-air premixing. This research was continued with injecting diesel fuel into the chamber using a Bosch common rail system. Direct photography technique with a digital camera was used to capture the real images of spray evaporation, spray length, and mixture formation with the time changes. The values of the temperature were recorded at ambient temperature, 55°C, 70°C, 85°C as well as 100°C. Injection pressure of 0.1 MPa up to 0.7 MPa was induced into the chamber with an increment of 0.1 MPa. The condition to which the fuel is affected was estimated by combining information on the block temperature, ambient temperature and photographs of the spray. The increase in block temperature increases the ambient temperature inside the chamber resulting in gain of spray area and wider spray angle. Thus predominantly promotes for a better fuel-air mixing.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influences of the end of injection and ambien;JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES;2017-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3