Physical Essence of Stall Phenomena and its WNN-Based Aerodynamic Modeling from Flight Data

Author:

Gan Xu Sheng1,Tang Xue Qin2,Gao Hai Long2

Affiliation:

1. XiJing College

2. PLA

Abstract

To understand the characteristics of aircraft stall for better aerodynamic model, the physical essence of the stall phenomena of aircraft is first introduced, and then a Wavelet Neural Network (WNN) is proposed to set up the stall aerodynamic model. Numerical examples indicates that through the deep cognition of the stall phenomena of aircraft the proposed stall aerodynamic method has a better accuracy than the traditional neural network and is also effective and feasible.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. V. Klein, J. G. Batterson, P. C. Murphy. Determination of airplane model structure from flight data by using modified stepwise regression. NASA TP-1916, (1981).

2. M. Tobak, L. B. Schiff. A nonlinear aerodynamic moment formulation and its implications for dynamic stability testing. AIAA Paper 71-275, (1971).

3. J. S. Cai, Q. Wan, W. Z. Wan. System identification of aircraft. Beijing: National Defense Industry Press, (2002), 26-62.

4. Z. Wang, C. E. Lan, J. M. Brandon. Fuzzy-logic modeling of nonlinear unsteady aerodynamics. AIAA-1998-4351, (1998).

5. D. J. Linse, R. F. Stengel. Identification of aerodynamic coefficients using computational neural networks. AIAA Journal of Guidance, Control, and Dynamics, 16(6), (1993), 1018-1025.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3