Estimation of Losses on 3Φ Nano Coated Induction Motor

Author:

Selvaraj D. Edison1,Vijayraj R.2,Kumar M. Raj3,Dhivya G.4,Sugumaran C. Pugazhendhi5,Joshi M. Rajmal1,Krishnamoorthi D.3,Ganesan J.6,Geethadevi S.7,Kumar S. Dinesh8

Affiliation:

1. Panimalar Engineering College

2. Dhanalakshmi Srinivasan College of Engineering and Technology

3. Dhanalakshmi Srinivasan College of Engineering and Technology, Mamallapuram

4. , Dhanalakshmi Srinivasan College of Engineering and Technology

5. Anna University

6. Sree Sowdambika College of Engineering

7. Aurora Technological and Research Institute

8. Department of EEE

Abstract

In this recent decades, there was a significant growth in the applications of nano technology in the field of electrical and electronics engineering. In this research paper, the estimation of the different types of losses on a normal and nano coated three phase induction motor was done and hence the results were compared with each other. From these researches, it found that the mechanical losses were reduced by 33.33% in the motor after nano coating whereas stator iron losses were reduced by 13.8%. Stator losses were reduced up to 16.7% by coating the windings of the motor with the enamel filled with nano fillers of SiO2 and Al2O3 whereas rotor copper losses were high in the nano coated motor. The output mechanical power developed by the normal motor was increased by 39% with the application of the nano fillers to the enamel used for the coatings of the windings of the motor whereas the gross rotor torque was improved by 42%. The power factor of the motor was also improved by nano coating by 15.5%.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3