Application of the Taguchi Optimization Method in Order to Improve the Quality of the Conical Mini-Parts Obtained by Forming Process

Author:

Teaca Robert Stefanut1,Brabie Gheorghe1

Affiliation:

1. University “Vasile Alecsandri” of Bacau

Abstract

Micro and mini manufacturing is becoming more important than before. Among micro and mini manufacturing processes, micro forming has economical and ecological benefits due to high production rate, low material scrap rate, net shape production, and improved mechanical properties through work hardening. Even though macro scale metal forming is well understood and has been extensively studied, these concepts cannot be applied directly to the micro scale metal forming [. In this paper, a conical mini-part was precisely evaluated from finite element (FE) simulation. The final geometry of the conical mini-part is affected by forming parameters of the deep drawing process (blankholder force, friction coefficient, speed of the deformation tools) and by the tool geometry. In order to reduce the geometry deviation, all the parameters must be studies separately to quantify their influence on the final mini-part geometry. This paper presents a study concerning the optimization of the forming process in order minimize the geometry deviation of the final parts. The main objective is to understand the factors that have the highest influence on the forming process of conical mini-parts and to modify them in such way that the resulted part is according to the designer specifications. The material used in this analysis is copper - zinc alloy with anisotropic properties. After the forming process of conical mini-parts is over and the part is removed from the forming tools, the geometry of the part is analysed and compared with the ideal shape. Due to cumulated effect of springback and other phenomena that affect the conical mini-part is not having the desired accuracy from the dimensional deviation point of view [2,. There are multiple factors that affect the mini-part geometry during forming process as: blankholder force, punch rounding radius, and side wall angle. The Dynaform 5.9.1 software was used to simulate the forming process. During optimisation process 27 simulations have been done. The part obtained after each simulation is analyzed and measured to quantify the deviation from the ideal part geometry. The presented optimization method is a good method to reduce the dimensional deviations. The advantages of this method are the reduced number of simulations tests that must be done and precision of the obtained results.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3