K-Means Clustering Algorithm Based on Prim Improvement

Author:

Zhang He Wei1,Sun Lei1,Zhang Hong1

Affiliation:

1. Zaozhuang Vocational College of Science and Technology

Abstract

K - means algorithm is the classical algorithm to solve the problem of clustering in the area of data mining, when the sample data meets certain conditions, the results of clustering is better. But the algorithm is sensitive to the initial clustering center and clustering results will change as the differences of initial clustering center its number. Aimed at this shortage, this paper proposes a new algorithm based on prim algorithm to select the initial clustering center, details the basic idea of the algorithm and improves the specific methods and implementation steps, finally uses a test for the contrastive analysis. Results show that the improved K - means clustering algorithm needs not to specify the initial clustering center in advance, and it is not sensitive to abnormal value, and at the same time the use of greedy strategy makes the clustering effect more optimal than usual algorithms.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3