Microstructure of Porous V2O-CeO2-SiO2 Catalyst for SCR of NO with NH3 at Low Temperature

Author:

Sohot Mohd Razali1,Jais Umi Sarah1,Sulaiman Muhd Rosli2

Affiliation:

1. Universiti Teknologi MARA (UiTM)

2. UiTM

Abstract

Selective catalytic reduction (SCR) is a well-proven method to reduce NO emission. However, to choose the right catalyst that provides a surface for reaction between NO and ammonia at low temperatures is a challenging task for a catalysts developers. In an earlier study, we prepared V2O5-CeO2-SiO2 catalyst with increasing V2O5 content by sol-gel route and found that the catalytic activity improved with increasing the V2O5 loading up to 0.5%. The catalytic activity, however, dropped when V2O5 loading was about 1% and increased back when the loading of V2O5 was about 5%. In this study, we looked into the microstructural relationship to explain these findings. The microstructures of the catalysts before and after exposure to NO gas revealed that the catalysts with 0.2% and 0.5% V2O5 were more porous after the reduction process possibly due to improved breakdown of (NH4)HCO3 to NH3 by the possible interaction with the V2O5 and CeO2-containing catalysts which consequently resulted in a more efficient NO reduction to N2 and H2O at low temperature. The microstructure of the catalyst with 1% V2O5 content to 5%, improved back the efficiency although clogging by CeVO4 phase still possible due to its presence based on XRD. The well-ordered micropores before exposure to NO and the more efficient breakdown of (NH4)HCO3 could have contributed to increase back the catalytic activity at low temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3