Optimal Production Inventory Policies for Operations: A Case Study of PVC Pipes Production

Author:

Godwin Harold C.1,Onwurah Uchendu O.1

Affiliation:

1. Nnamdi Azikiwe University

Abstract

This study focuses on solving the problem of overstocking and under stocking of production inventory in manufacturing sector. To ensure effective management of inventory in manufacturing sector, three years production data were gathered and properly analyzed using multiple linear regression analysis and time series forecasting methods. A multiple linear regression model was developed in MINITAB software to make prediction for inventory requirements. From the result, the coefficient of determination (R2) is 1.00, the adjusted R2 is 1.00, F-distribution is 4.212 x 107 which is greater than any value in F-distribution table, and all these show a very strong relationship between the dependent variable and the independent variables. Also, a Time series analysis was done to make forecast of monthly inventory requirements for both raw materials and finished products. Trend analysis and Moving Average method were used in Time series forecasting, and lower Mean Absolute Percent Error (MAPE) and Mean Absolute Deviation (MAD) were used as criteria for selecting the method that gives the best forecast. From the results obtained, Trend analysis gave MAPE 13% and MAD 2350, while Moving Average gave MAPE 14% and MAD 2574. This work adds to growing body of literatures on data driven inventory management by utilizing historical data in customized software for generation of models that can effectively make forecast of inventory requirements in manufacturing sector. Nomenclature: a = Value of yt at t = 0; b = Trend Value; MA= Moving Average; MAD = Mean Absolute Deviation MAPE =Mean Absolute Percentage Error; N = Number of periods; t = Period Yt = Forecast for period t y = Monthly Quantity of Product Produced α=regression constant β1-βk=Coefficients of the independent variables

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3