The Determination of Multi-Axial Fatigue in Magnetorheological Elastomers Using Bubble Inflation

Author:

Zhou Yan Fen1,Jerrams Stephen1,Chen Lin1,Johnson Mark1

Affiliation:

1. Dublin Institute of Technology

Abstract

Fatigue life is one of the most important physical characteristic that is investigated by materials engineers and scientists. The high dynamic loading experienced by machine parts necessitates understanding fatigue properties in critical components. Despite this requirement, elastomer fatigue criteria are imperfectly understood and even less is known about fatigue resistance in the emerging range of smart elastomers. In this paper, initial research into the equi-biaxial fatigue behaviour of magnetorheological elastomers (MREs) is described. Physical testing was carried out using a bubble inflation testing system. Silicone rubber based test samples were fatigued at different stress amplitudes ranging between 0.75MPa and 1.4MPa using engineering stress as the control mode. S-N (Wöhler) curves showing the plots of stress amplitude (σa) versus cycles to failure (N) are presented. Stress-strain behaviour throughout fatigue process is also described. For a fatigue test at a stress amplitude of 0.75MPa and no pre-stressing, it was found that stress softening occurred for the entire duration of the test, but was particularly pronounced in the first 100 cycles of testing.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3