Numerical Analysis of Residual Stresses in Quenched High-Strength Aluminum Alloy Ultra-Thick Plates and their Reduction through Single-Side Cold Compression Method

Author:

Liu Jia Chen1,Wang Jin Liang1,Chen Hui Qin1

Affiliation:

1. Taiyuan University of Science and Technology

Abstract

Residual stresses developed after quenching of high-strength aluminum alloy ultra-thick plates have an important effect on the quality and reliability of parts, and should be reduction to meet the requirement. In this investigation, numerical techniques of SIMUFACT software are used to simulate residual stresses in quenched 340mm×127mm×124mm Al-Zn-Mg-Cu high-strength aluminum alloy ultra-thick plate, and the results have been verified. On the basis of verified simulation parameters, residual stresses in quenched 4000mm×720mm×285mm ultra-thick plate and their reduction through single-side cold compression method were simulated by SIMUFACT software. After quenching, the value of maximum tension stress located at the interior center of the plate is 200MPa, and the value of maximum compression stress located on the surface of the plate is-169MPa. Through analysis of single-side cold compression processes, it can be concluded that more than 90% quenching residual stresses can be reduced by 1% upsetting ratio and 75% feed of the top die. Residual stresses after compression can be reduced down to the range of-25~9MPa. Mean residual stress values of simulation after compression are identical to the XRD testing data.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3