Abstract
Heterogeneous bacterial sulphur systems are inherently complicated. However, developing an understanding of the influence of environmental factors such as pH,Iand PCO2is important for a number of fields. Examples of these include minimising acid mine drainage and maximising metal recovery from low-grade sulphide minerals. Measuring the effect of these factors on the extent and rate of sulphur (S) oxidation is complicated by the presence and nature of solid phase elemental S. The rate and extent of S oxidation can be determined indirectly via the reaction product, H2SO4, which was quantified using pH measurements in this study. The method was critically dependent on the quality of pH data but proved effective in providing rate constants for the catalysed S oxidation reaction and yield (biomass/substrate) estimates in the range pH > 1.5. IncreasingIover the range 0.176 0.367 mol L-1decreased bacterial cell yields but increased the rate of sulphur oxidation significantly. Partial pressures of CO2in the range of 0.039 1.18% v/v produced no significant effect on the rates of S oxidation or bacterial cell yields. Bacterial cell yields were not affected in the pH range 1.5 2.5, however the rate of S oxidation increased significantly from pH 2.0 2.5. In the range pH < 1.5 the batch cultures progressed and although no reliable rate data was recorded cell yields decreased from 7.43 to 2.05 (× 1012cells mol-1) at pH 1.5 to 1.0 respectively.
Publisher
Trans Tech Publications, Ltd.