Investigation on Magnetic Properties of L10-FePt/Fe Graded Media Multilayer

Author:

Tipcharoen Warunee1,Kaewrawang Arkom1,Siritaratiwat Apirat1,Tonmitra Kittipong1

Affiliation:

1. Khon Kaen University

Abstract

To improve writing capability of high magnetic anisotropy medium - L10-FePt, graded medium multilayer is one key candidate. Therefore, investigation of magnetic material properties of graded media multilayer is essential. In this work, we focus on magnetic properties of L10-FePt/Fe graded media multilayer such as hysteresis loop, magnetic energy and magnetic domain by the micromagnetic simulation the object oriented micromagnetic framework software based on the Landau - Lifshitz - Gilbert equation. The graded media multilayer can achieve reducing the switching field, Hsw, below available writing head field with high thermal stability. The anisotropy energy in graded media is higher than single layer and bilayer media that results in unstable magnetization in preferred direction. The proposed graded (f) and (g) structures are high grading magnetocrystalline anisotropy constant, Ku, that can reduce Hsw below single layer, bilayer and available writing head field. The hysteresis loop of low grading Ku structures has different steps; however, it disappear with high grading Ku structures of graded (e) - (g) structures. They have narrow loop compared with single layer. The results from this work lead to improve magnetic trilemma issue and increase data density.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3