Segmentations of Liver and Hepatic Tumors from 3D Computed Tomography Abdominal Images

Author:

Wei Yun Tao1,Zhou Yi Bing2

Affiliation:

1. Jiamusi University

2. Center Hospital

Abstract

The segmentation of liver using computed tomography (CT) data has gained a lot of importance in the medical image processing field. In this paper, we present a survey on liver segmentation methods and techniques using CT images for liver segmentation. An adaptive initialization method was developed to produce fully automatic processing frameworks based on graph-cut and gradient flow active contour algorithms. This method was applied to abdominal Computed Tomography (CT) images for segmentation of liver tissue and hepatic tumors. Twenty-five anonymized datasets were randomly collected from several radiology centres without specific request on acquisition parameter settings nor patient clinical situation as inclusion criteria. Resulting automatic segmentations of liver tissue and tumors were compared to their reference standard delineations manually performed by a specialist. Segmentation accuracy has been assessed through the following evaluation framework: dice similarity coefficient, false negative ratio, false positive ratio and processing time. The implemented initialization method allows fully automatic segmentation leading to superior overall performances of graph-cut algorithm in terms of accuracy and processing time. The initialization method here presented resulted suitable and reliable for two different segmentation techniques and could be further extended.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3