Molecular Dynamics Simulation of Nanocluster Formation in a Supersonic Nano Nozzle Fabricated by Anodizing the Aluminum

Author:

Tanhai Mohammad Hossein1,Saramad Shahyar1,Nayebi Peyman1

Affiliation:

1. Amirkabir University of Technology

Abstract

A molecular dynamics method has been developed and applied for simulation of a supersonic Ne gas expansion through a convergingdiverging nozzle. Although the classical nucleation theory is able to explain some physics of the nucleation processes, however, due to the physical inaccuracy of the classical nucleation theory for small clusters, molecular dynamic method is more usable for studying gas flows having clusters. Pressure, flow velocity, temperature were parameters that extracted by MD method along the central x-axis. The nucleation and condensation of the clusters and their transient and equilibrium behavior are other parameters that are investigated in this simulation. The results show that although with suitable conditions the formation of clusters in a nanonozzle is possible, but the size of clusters is much smaller than its counterpart in macro scale and clusters with especial magic numbers are formed. The proposed novel method for fabrication this kind of nanonozzle is multi-step anodizing of the aluminum. This nanonozzle which can be fabricated experimentally can be used in Ionized Cluster Beam Deposition (ICBD) method.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3