A Study Initiated because of the Global Warming from R-134a

Author:

Memet Feiza1,Mitu Daniela Elena1

Affiliation:

1. Constanta Maritime University

Abstract

Vapour compression cycles are commonly used in household refrigerators and also in many commercial and industrial refrigeration systems. R-134a is a working fluid widespread in this kind of systems. A chlorine free refrigerant such as R-134a has a disadvantage in the sense of its relatively high Global Warming Potential (GWP), although the specific Ozone Depletion Potential (ODP) is null. International concern over the relatively high global warming potential of R-134a, and other refrigerants belonging to the same family, will lead in the near future to the stop of their production and use. For this reason, the interest in finding of an environmental more benign substitute for this refrigerant is growing. In the meantime, the alternatives for R-134a should be as thermodynamically attractive as this chemical. In this study it is theoretically assessed the opportunity of using R-600a (isobutane) in the future environment friendly vapour compression refrigeration systems. Choosing of isobutane is explained by the fact that it is a naturally occurring refrigerant. During the thermodynamic analysis, R-134a and R-600a are evaluated for a range of evaporating temperatures starting with 25°C and finishing with 0°C. There are considered three levels of the condensing temperature: 30°C, 40°C, 50°C. For these two refrigerants are compared results regarding saturated vapour pressure, Coefficient of Performance, volumetric cooling capacity, compressor discharge temperature, refrigerant mass flow rate. Also, in the scope of future improvement of systems adopting R-600a as a refrigerant, it is performed an exergy analysis, which is able to reveal the hierarchy of inefficiencies in the system. The results obtained indicate that adopting of R-600a instead of R-134a in vapour compression refrigeration systems is a decision motivated not only by environment reasons, but also by thermodynamic arguments. Values for the Coefficient of Performance when using R-600a are slightly lower than when in use is R-134a, but isobutane offers better environmental requirements like zero Ozone Depletion Potential and very low Global Warming Potential. Exergy analysis developed for R-600a as a working fluid revealed that the most inefficient is the compressor. Better exergy efficiency can be obtained for higher values of the evaporating temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3