Abstract
Recently, a few studies have shown that the introduction of liquid crystals (LCs) in polymer electrolytes would lead to an increase in the chain mobility and the ionic conductivity. It is believed that this enhancement of the polymer electrolyte performance is greatly influenced by the order parameter of the liquid crystal in this system. In this study, a deuterated 4-pentyl-4-cyano-biphenyl (5CB-d2) nematic liquid crystal-doped polyvinyl alcohol (PVA) polymer electrolyte were prepared. The orientational order of the nematic liquid crystal is then investigated via the quadrupolar splittings of the deuterium Nuclear Magnetic Resonance (NMR) spectra. The quadrapolar splitting, which is directly related to the orientational order of the liquid crystal director, was measured and compared between the embedded 5CB-d2 in the PVA electrolyte to that of the pure 5CB-d2. The conductivity of a 5CB-d2 embedded in PVA reached up to 3.28x10-1 S/cm compare to that of without 5CB-d2 which is only 2.89x10-1S/cm. The presence of 5CB-d2 in the PVA polymer electrolyte improved the electrical conductivity of the mixture through an improved charge transfer mechanism, which improves its electrical properties, a criterion useful for a device that needs high conductivity.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献